SWI/SNF chromatin remodeling regulates alcohol response behaviors in Caenorhabditis elegans and is associated with alcohol dependence in humans.
نویسندگان
چکیده
Alcohol abuse is a widespread and serious problem. Understanding the factors that influence the likelihood of abuse is important for the development of effective therapies. There are both genetic and environmental influences on the development of abuse, but it has been difficult to identify specific liability factors, in part because of both the complex genetic architecture of liability and the influences of environmental stimuli on the expression of that genetic liability. Epigenetic modification of gene expression can underlie both genetic and environmentally sensitive variation in expression, and epigenetic regulation has been implicated in the progression to addiction. Here, we identify a role for the switching defective/sucrose nonfermenting (SWI/SNF) chromatin-remodeling complex in regulating the behavioral response to alcohol in the nematode Caenorhabditis elegans. We found that SWI/SNF components are required in adults for the normal behavioral response to ethanol and that different SWI/SNF complexes regulate different aspects of the acute response to ethanol. We showed that the SWI/SNF subunits SWSN-9 and SWSN-7 are required in neurons and muscle for the development of acute functional tolerance to ethanol. Examination of the members of the SWI/SNF complex for association with a diagnosis of alcohol dependence in a human population identified allelic variation in a member of the SWI/SNF complex, suggesting that variation in the regulation of SWI/SNF targets may influence the propensity to develop abuse disorders. Together, these data strongly implicate the chromatin remodeling associated with SWI/SNF complex members in the behavioral responses to alcohol across phyla.
منابع مشابه
Caenorhabditis elegans SWI/SNF Subunits Control Sequential Developmental Stages in the Somatic Gonad
The Caenorhabditis elegans somatic gonadal precursors (SGPs) are multipotent progenitors that give rise to all somatic tissues of the adult reproductive system. The hunchback and Ikaros-like gene ehn-3 is expressed specifically in SGPs and is required for their development into differentiated tissues of the somatic gonad. To find novel genes involved in SGP development, we used a weak allele of...
متن کاملInvolvement of Global Genome Repair, Transcription Coupled Repair, and Chromatin Remodeling in UV DNA Damage Response Changes during Development
Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage reco...
متن کاملG1/S Inhibitors and the SWI/SNF Complex Control Cell-Cycle Exit during Muscle Differentiation
The transition from proliferating precursor cells to post-mitotic differentiated cells is crucial for development, tissue homeostasis, and tumor suppression. To study cell-cycle exit during differentiation in vivo, we developed a conditional knockout and lineage-tracing system for Caenorhabditis elegans. Combined lineage-specific gene inactivation and genetic screening revealed extensive redund...
متن کاملSWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding.
The SWI-SNF complex in yeast and related complexes in higher eukaryotes have been implicated in assisting gene activation by overcoming the repressive effects of chromatin. We show that the ability of the transcriptional activator GAL4 to bind to a site in a positioned nucleosome is not appreciably impaired in swi mutant yeast cells. However, chromatin remodeling that depends on a transcription...
متن کاملThe conserved PBAF nucleosome-remodeling complex mediates the response to stress in Caenorhabditis elegans.
To adapt to stress, cells must undergo major changes in their gene expression profiles. We have previously described a largely uncharacterized stress response pathway in Caenorhabditis elegans that acts through an evolutionarily conserved motif, termed ESRE, for ethanol and stress response element. We characterize here the requirements for ESRE gene expression and show that the ESRE network is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 10 شماره
صفحات -
تاریخ انتشار 2015